Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques.

نویسندگان

  • Wim Martinet
  • Michiel W M Knaapen
  • Guido R Y De Meyer
  • Arnold G Herman
  • Mark M Kockx
چکیده

BACKGROUND The formation of reactive oxygen species is a critical event in atherosclerosis because it promotes cell proliferation, hypertrophy, growth arrest, and/or apoptosis and oxidation of LDL. In the present study, we investigated whether reactive oxygen species-induced oxidative damage to DNA occurs in human atherosclerotic plaques and whether this is accompanied by the upregulation of DNA repair mechanisms. METHODS AND RESULTS We observed increased immunoreactivity against the oxidative DNA damage marker 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) in plaques of the carotid artery compared with the adjacent inner media and nonatherosclerotic mammary arteries. Strong 8-oxo-dG immunoreactivity was found in all cell types of the plaque including macrophages, smooth muscle cells, and endothelial cells. As shown by competitive ELISA, carotid plaques contained 160+/-29 8-oxo-dG residues/10(5) dG versus 3+/-1 8-oxo-dG residues/10(5) dG in mammary arteries. Single-cell gel electrophoresis showed elevated levels of DNA strand breaks in the plaque. The overall number of apoptotic nuclei was low (1% to 2%) and did not correlate with the amount of 8-oxo-dG immunoreactive cells (>90%). This suggests that initial damage to DNA occurs at a sublethal level. Several DNA repair systems that are involved in base excision repair (redox factor/AP endonuclease [Ref 1] and poly(ADP-ribose) polymerase 1 [PARP-1]) or nonspecific repair pathways (p53, DNA-dependent protein kinase) were upregulated, as shown by Western blotting and immunohistochemistry. Overexpression of DNA repair enzymes was associated with elevated levels of proliferating cell nuclear antigen. CONCLUSIONS Our findings provide evidence that oxidative DNA damage and repair increase significantly in human atherosclerotic plaques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DETECTION AND RESTRICTION ANALYSIS OF C YTOMEGALOVIRUS DNA PERSISTING IN HUMAN ATHEROSCLEROTIC PLAQUES USING POLYMERASE CHAIN REACTION

The polymerase chain reaction (PCR) as applied to detection of a foreign DNA in clinical specimens could provide a sensitive instrument for rapid detection of viral DNA persisting in tissues of patients suspected of latent infection. Human cytomegalovirus (HCMV) DNA was found in arterial plaques of patients with atherosclerotic lesions using a PCR assay with nested primer oligonucleotides ...

متن کامل

Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering.

Increased oxidative stress is a major characteristic of hypercholesterolemia-induced atherosclerosis. The oxidative environment is mainly created by the production of reactive oxygen species, which are assumed to mediate vascular tissue injury. Oxidative DNA damage resulting from free radical attack remains, however, a poorly examined field in atherosclerosis. Male New Zealand White rabbits wer...

متن کامل

Effect of Helicobacter pylori DNA in human atherosclerotic plaques

Introduction: A number of studies have demonstrated that infectious mico organisms like helicobacter pylori may play a role in the process of atherosclerosis. We, here, aimed to investigate the effect of Helicobacter pylori DNA in atherosclerotic plaques in patients with coronary artery disease. Methods: In a cross-sectional study, 85 patients undergoing coronary artery bypass graft (CAB...

متن کامل

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 106 8  شماره 

صفحات  -

تاریخ انتشار 2002